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Statistical analysis of shear cracks on rock surfaces
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Abstract. A set of 3873 cracks on exposed granite rock surfaces are analyzed in order to investigate possible
fracture mechanisms. The fracture patterns are compared with the Mohr-Coulomb and the Roscoe fracture
models, which can be combined into a single fracture scheme. A third model for comparison is based on
interacting ‘penny-shaped’ micro cracks introduced by Healy et al. [Nature 439, 64 (2006)]. The former
models predict a bimodal fracture angle distribution, with two narrow peaks separated by 60◦ − 90◦

symmetrically on both sides of the direction of the largest principal stress, while the latter predicts a
single broader peak in the same direction with standard deviation in the range 15◦−20◦. The crack length
distributions seem consistent with numerical simulation, whereas the fracture patterns are Euclidean rather
than fractal. The statistical analyses indicate that none of the models fully describe the fracture patterns. It
seems that natural shear fractures easily become a complex combination of different fracture mechanisms.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 61.43.-j Disordered solids

1 Introduction

Crack patterns formed during fracture of brittle mate-
rial are highly complex structures. There are several rea-
sons for this complexity. Brittle material fracture through
cracks which appear at locations where the stress exceeds
the local fracture threshold [2]. Once cracks have been
formed an enhanced stress concentration form at crack
tips making the cracks unstable. According to the Griffith
criterion for crack propagation, cracks longer than a criti-
cal length are unstable while shorter cracks remain stable
for a given tensile stress [1]. Once cracks propagate they
are prone to branching and splitting [3]. Furthermore, all
brittle materials that appear in nature include some kind
of flaws, impurities, grains or micro-cracks arranged in
more or less random patterns. Such heterogeneities often
act as origins of cracks and they may also alter crack prop-
agation directions locally. Cracks also strongly affect the
stress field over large areas which induce spatial correla-
tions between cracks [4].

In spite of the complexity, there are some models, of
shear fracture in particular, which rather well describe at
least laboratory experiments [5]. Shear fracture patterns
that appear in nature are much less controlled and thereby
usually more difficult to understand. In this investigation
a set of 3873 cracks on granite surfaces are used for test-
ing three different shear fracture models (Mohr-Coulomb,
Roscoe and Healy). It is demonstrated that none of the
models are sufficient to explain the fracture patterns on
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their own, though the Roscoe model seems to best catch
parts of the observed patterns. A linear combination of
different fracture processes with different shear fracture
mechanisms and boundary conditions would probably be
sufficient to explain the observed patterns. The applica-
tion of shear fracture for granite is particularly important
because of its obvious connection to large-scale shear frac-
ture in tectonic fault zones and the related earthquake
hazard.

In very general terms, fractures can be divided into
tensile and shear fracture. If the three eigenvalues of the
stress tensor are denoted by σ1, σ2 and σ3 the hydro-
static pressure (σ) on a body is σ ≡ −(1/3)

∑
i σi (with

i = 1, 2, 3). If σ is negative, i.e. ‘negative pressure’, then
fracture will be tensile with crack surfaces being torn apart
by the body tension. With a positive pressure it is usu-
ally very difficult to fracture a body unless it contains
voids or pores to some extent. In the case of compression
it is not the pressure but the deviatoric or shear stress
(σi − σj , i �= j) that is responsible for fracture. Assuming
that |σ1| < |σ2| < |σ3|, shear fracture will most likely first
appear along a plane parallel to the eigenvector of σ2. In
this case, fracture means that the body parts will slide on
each other along such a plane. Any plane parallel to σ2 will
experience a compressive normal force N and a tangential
shear force S. At the initial stage of fracture a crack line
must be formed and this demands that the cohesive forces
k of the material must be overcome to form a crack. Once
a crack is formed, slippage between the planes will occur
if S > ηN , where η is the friction coefficient of the mate-
rial (i.e. the ‘effective’ friction coefficient, which may vary
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depending on the fracture geometry). Shear fracture will
thus occur along a plane for which S > k+ηN . The shear
and normal stresses on a plane oriented at an angle θm−c

to σ3 are given by

S = cos(θm−c) sin(θm−c)(σ3 − σ1) (1)

N = cos2(θm−c)σ3 + sin 2(θm−c)σ1. (2)

Maximizing S− ηN with respect to θm−c gives that shear
fracture will appear along a plane oriented at an angle
θm−c = (π/2−atan(η))/2 to the direction σ3. η is typically
in the range 0.5–0.7 for various kinds of rocks, which gives
θm−c ≈ 30◦. This is the result of the Mohr-Coulomb shear
fracture model.

The fracture model of Roscoe [6] differs slightly from
the Mohr-Coulomb model. In the Roscoe model the shear
fracture angle is θr = (π/2 − ψ)/2, where ψ is the angle
of dilation, which is determined not by the normal and
tangential forces on a plane before fracture as in the Mohr-
Coulomb model, but by the incremental plastic strains at
the failure point (σp

i ). ψ is given by

sin(ψ) = − dσp
1 + dσp

3

|dσp
1 − dσp

3 |
. (3)

The interpretation of ψ is that for ψ = 0 the material
preserves volume during plastic strain, while it expands
to some extent for ψ > 0. The extension of the material
takes place due to opening of cracks and sliding along
rough crack surfaces. This is why the angle is called the
dilation angle. It is usually rather small (0◦–10◦).

Shear fracture of rock changes with temperature and
pressure. At low temperatures and pressures the material
is quite brittle while at high temperatures and pressures
it become more ductile. Such changes will alter both θm−c

and θr, but the Mohr-Coulomb and Roscoe fracture mod-
els are still applicable. It should also be noticed that the
Mohr-Coulomb and Roscoe fracture models do not ex-
clude each other. The material yield may be determined
by the Mohr-Coulomb fracture criterion, while the plastic
strain may be governed by the Roscoe model.

For a positive σ, homogeneous compact material is
fractured only through shear fracture as described above.
This changes if the material is not compact but contains
small micro-cracks or voids. This is rather well demon-
strated by a stress field around a 2D circular hole under
compression which may be solved for. In cylindrical coor-
dinates the components (σrr , σφφ, σrφ) become [7]

σrr =
σinf

2

(

1 − a2

r2

)

+
σinf

2

(

1 − 4a2

r2
+

3a4

r4

)

cos(2φ)

(4)
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σinf
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− σinf
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(
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3a4
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cos(2φ) (5)

σrφ = −σinf

2

(

1 +
2a2

r2
− 3a4

r4

)

sin(2φ), (6)

where a is the radius of the hole and σinf is the stress
in the radial direction at φ = 0 far from the hole. For a

compressive stress (σ3 < σ1 < 0), it can be extracted from
equation (5) that tension easily becomes positive within
an interval symmetrically around the direction of σ3 in
the direction of σ1 (e.g. by choosing σ3 as the direction
φ = 0 and σ1 as the direction φ = −π/2 and adding the
two stress components equation (5) for the two orthogo-
nal directions). This means that in a compressive stress
situation tensile fracture is possible near voids or micro
cracks. This changes the fracture behavior quite radically.
In particular it means that fracture planes are likely to
appear parallel to the maximum principle stress direction
and within an interval symmetrically located around this
direction. This is in sharp contrast to the Mohr-Coulomb
or Roscoe fracture, where the fracture planes only appear
at the angles ±θm−c or ±θr from the same direction (or
maybe at an angle that is somewhere between θm−c and
θr [8]).

The interval in which the stress is tensile depends on
the shape of the crack. Probably, the best estimate of
the interval width for typical micro-crack is that of Healy
et al. [9] using the solution of Eshelby [10] for “penny-
shaped” cracks. This model gives that the penny-shaped
cracks interact to strengthen the tensile stress within ±26◦
from each other. The Healy model thus predicts a set of
cracks with orientation distributions within an interval
of 52◦.

It is not only the orientation angle of the cracks in a
fracture pattern that is a useful measurable quantity. Also
the length of the individual cracks can be estimated. This
quantity cannot be completely unambiguously determined
because in principle, it is impossible to determine where
a new crack begins, where another one stops or if it is a
single crack that turns abruptly.

In a numerical model based on the Mohr-Coulomb and
Roscoe model fracture, Poliakov and Herrmann [11] deter-
mined the fractal dimension (box counting algorithm) and
the length distribution of a shear crack pattern. In this
model, the strength of the material (i.e. the yield point) is
determined by the Mohr-Coulomb model while the plastic
strain is determined by the Roscoe’s model through the
dilation angle ψ. As could be expected, the orientation
angle of the shear fracture was found within the interval
[θm−c, θr]. The crack length distribution was found to be
a power-law with the exponent 2.1 ± 0.1, and the geo-
metrical fractal dimension of the cracks to be 1.7 ± 0.1.

In order to test the results of the models above, a set of
four crack patterns were analyzed. The fracture patterns
contained a total of 3873 detected crack lines, ranging in
size from a few tens of centimeters to over ten meters.
Also the dip angles of the fracture planes were extracted.
Since the angles for a clear majority were quite close π/2,
we could use the 2D patterns to estimate the angles be-
tween the crack planes. The cracks were measured by on-
site field measurements on four exposed granite surfaces
of approximately 30 m × 30 m a few kilometers apart
from each other near the Äspö Hard Rock Laboratory
in Oskarshamn [13–15]. The crack patterns are displayed
in Figure 1. The cracks are divided into connected dis-
crete line segments with a resolution of about 10 cm. The
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Fig. 1. Four crack patterns on exposed granite rock surfaces from the east coast of Sweden near the Äspö Hard Rock Laboratory
in Oskarshamn. The approximate dimensions of the crack patterns are 30 m × 30 m. Cracks down to a few tens of centimeters
are recorded. The longest cracks are over 10 m.

cracks are fairly straight and the orientation angles are
thus well defined. At intersections a crack typically ter-
minates or continues in approximately the same direction
on the other side, which means that cracks can easily be
distinguished.

The crack angle distributions of the crack patterns are
displayed in Figure 2. This figure shows the total crack
length within small angle intervals of the cracks in Fig-
ure 1. I.e. for each crack an orientation angle is defined as
the orientation angle of the line between the end points of
the crack, and the sum of the lengths of the cracks with
orientation between θ and θ+ δθ is plotted in Figure 2 as
a function of θ.

From Figure 2 it is quite clear that some distinct peaks
in the crack orientation angles can be identified. Gaussian
distribution functions are fitted to these peaks and the fits
are displayed with broken lines in Figure 2. The angles of
the maxima and the standard deviations of the peaks are
listed in Table 1. The two last columns of this table show
the minimum angle between the peak maxima, and the
estimated direction of the largest principal stress, where
applicable.

Fitting a Gaussian distribution does not give an ex-
act determination of the interval of the orientation an-
gles. If there is a ‘noise level’ in the data, the width of the
Gaussian at this level may function as the interval width.
Then roughly, the Healy interval of maximum ±26◦ cor-
responds to a standard deviation of about 15◦–20◦. This
means that three peaks (in B, C and D) are broad enough
to be possible Healy fractures, while six peaks are too nar-
row. The crack patterns A, C and D all contain only two
peaks and minimum angles which fit well the Roscoe angle
(2θr ∈ [80◦, 90◦]) for A and C and perhaps also for D (D
also fits the Arthur angle (θm−c + θr)/2 [8]).

This means that A can be interpreted as a pure Roscoe
model fracture. C can also be identified as a Roscoe frac-
ture but with one peak broad enough to be a Healy frac-
ture. D is possibly also a Mohr-Coulomb/Roscoe fracture
but has one peak broad enough to be a Healy fracture. B
is the most complicated case with two high peaks and
possibly one low peak between them. The low peak is
broad enough to be a Healy fracture, but the other two are
too narrow. The angle between the two narrow peaks is
only 41◦, which is quite small even to be a Mohr-Coulomb
model angle.
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Fig. 2. (A–D) The orientation angle distribution (total length of cracks with average orientation between θ and θ + δθ) for the
fracture patterns in Figure 1. θ = 0 corresponds to a horizontal crack in Figure 1.

Table 1. Location (in degrees) of the orientation distribution
maxima (Max) displayed in Figure 2 (A, B, C and D, respec-
tively), and the standard deviation (std) of the fitted Gaussian
distributions. The two last columns give the minimum angle
between the peaks, and the estimated direction of the largest
principal stress for A, C, D, for which it is possible to be ex-
tracted.

Fig. Max, std Max, std Max, std Min ang σ3

A 18, 5 –74, 8.5 – 88 62
B 75, 10 0, 20 –64, 3.5 75, 64, 41 –
C 70, 15 –22, 8 – 88 –66
D –25, 20 78, 4 – 77 –63.5

The length distribution of the cracks in Figure 1 are
compared with the Mohr-Coulomb/Roscoe model results
of reference [11] in Figure 3. The line is the power-law
n(l) ∝ l−2.1. The results are consistent but the length
scale range of the measured fracture lines is too small to
prove scale invariance. The power exponent being close
to 2 is interesting because this value gives a constant area
density of cracks at any length scale (i.e. the average num-
ber of cracks of length between l and l + δl in an area of
size l2 is independent of l). In this respect the crack pat-
terns are self-similar. It seems, however, that the power-
law n(l) ∝ l−2.1 cannot be extended to large scale fracture
zones (102–105 m), but instead, fitting a power-law to the
entire length range gives n(l) ∝ l−3 [15].

Finally, the dimension of the crack patterns are de-
termined using the box-counting algorithm. In contrast
to reference [11] no fractality is detected. The number of
boxes containing a crack line scales as 1/l2b for large boxes
and for small boxes as 1/lb, where lb is the side length
of the boxes. This means that on large scales the frac-
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Fig. 3. The length distribution of crack lines for the four frac-
ture patterns in Figure 1. The straight line is the result of
reference [11] n(l) ∝ l−2.1.

ture patterns have a dimension similar to their Euclidean
dimension (D = 2), while the (D = 1) structure of the
crack line becomes visible on small scales. In a log-log plot
(Fig. 4) no power-law regime can be detected in the cross-
over between these two limits. It is possible that such a
regime could be detected if smaller cracks were included in
the crack patterns, but the data available at the moment
does not indicate any fractality in the crack patterns.

The cross-over point between D = 2 and D = 1 occurs
at about 1/lb ≈ 50, which corresponds to a crack length
of about half a meter. This defines the typical separation
distance between cracks and thus also the coarseness of
the crack network [12].
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Fig. 4. The number of boxes nb containing a crack line as
function of 1/lb, where lb is the side length of the boxes covering
the crack pattern. The steeper straight line slope is nb ∝ 1/l2b
and the moderate slope is nb ∝ 1/lb.

An interesting observation is that the orientation an-
gle distribution maxima does not coincide for the four sets
of cracks even though they are located within a few kilo-
meters from each other. C and D seem to have the same
orientation, but A and B differ from these two and from
each other. A plausible explanation is that both C and
D are located east of a large shear zone (called the Äspö
shear zone), while A and B are located west of this zone.
This would indicate that at least some of the crack pat-
terns have been formed after the shear zone. The forma-
tion of a shear zone effectively releases shear stress [16,17]
and therefore, one would expect that the principal stress
directions in its vicinity after its formation are along the
shear zone and perpendicular to it. Right before the for-
mation of the zone (that is, on a geological time scale) one
would, conversely, expect that shear stress across the zone
is at its maximum. The orientation of the Äspö shear zone
is roughly 60◦ near the crack pattern locations. The ex-
pected principal stress directions, after the shear zone for-
mation, would then be roughly 60◦ and –30◦. The former
angle coincides with A if it is a Mohr-Coulomb/Roscoe
fracture. The orientation maxima for C and D does not
seem to be related to the shear zone direction.

Based on the orientation angle analysis summarized
in Table 1 it is impossible to make a clear distinction of
the dominating shear fracture mechanism responsible for
the crack patterns in Figure 1. The results of the statisti-
cal analysis presented here are perhaps a little in favor of
the Roscoe model fracture. The general conclusion must,
however, be that none of the Mohr-Coulomb, Roscoe or
Healy model is sufficient to fully explain the crack pat-
terns in Figure 1 on their own. It is likely that the crack
patterns are results of a non-trivial combination of several
involved mechanisms. In particular, it seems possible that
a Mohr-Coulomb/Roscoe fracture mechanism has domi-
nated in general, but that interacting micro-cracks have
caused quite a lot of fluctuations in the crack plane direc-

tions, thus explaining the relative broad peaks in the ori-
entation angle distributions. It also seems likely that the
approximately 109 years old granite has undergone several
chronologically separate fractures under different loading
conditions forming the patterns detected today [14]. This
may, at least in part, explain why no fractality is detected.

Introducing a fracture model with N different and sep-
arate fracture processes that leads to a fracture pattern
that is a linear combination of the crack pattern of the
different models and with different weights and loading
conditions would certainly be sufficient to reproduce the
observed crack orientation distributions. As already men-
tioned above:A can be interpreted as a pure Roscoe model
fracture, B as a combination of Healy and Mohr-Coulomb
fractures, and both C and D as a Mohr-Coulomb/Roscoe
fracture with one Healy fracture orientation angle max-
ima coinciding with one of the M-C/R peaks. This level of
detailed interpretation of the fracture patterns are, how-
ever, not much more than speculations of the origin of
very complex patterns.
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Hard Rock Laboratory can be found under
http://www.skb.se

14. J. Hermanson, O. Forssberg, A. Fox, P. La Pointe, SKB-
report: SKB R-05-45 (available at http://www.skb.se)
Statistical model of fractures and deformation zones.
Preliminary site description, Laxemar subarea, version 1.2
(2005)

15. C. Darcel, P. Davy, O. Bour, J.-R. De Dreuzy, SKB-
report: SKB R-04-76 (available at http://www.skb.se)
Alternative DFN model based on initial site investigations
at Simpevarp (2004)

16. M.J. Zoback, V. Zoback, J. Mount, J. Eaton, J. Healy,
Science 238, 1105 (1987)
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